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ABSTRACT
In 802.11 managed wireless networks, the manager can ad-
dress under-served links by rate-limiting the conflicting nodes.
In order to determine to what extent each conflicting node is
responsible for the poor performance, the manager needs to
understand the coordination among conflicting nodes’ trans-
missions. In this paper, we present a management frame-
work called MIDAS (Management, Inference, and Diagnos-
tics using Activity Share). We introduce the concept of
Activity Share which characterizes the coordination among
any set of network nodes in terms of the time they spend
transmitting simultaneously. Unfortunately, the Activity
Share cannot be locally measured by the nodes. Thus, MI-
DAS comprises an inference tool which, based on a com-
bined physical, protocol, and statistical approach, infers the
Activity Share by using a small set of passively collected,
time-aggregate local channel measurements reported by the
nodes. MIDAS uses the estimated Activity Share as the
input of a simple model that predicts how limiting the trans-
mission rate of any conflicting node would benefit the through-
put of the under-served link. The model is based on the cur-
rent network conditions, thus representing the first through-
put model using online measurements. We implemented our
tool on real hardware and deployed it on an indoor testbed.
Our extensive validation combines testbed experiments and
simulations. The results show that MIDAS infers the Ac-
tivity Share with an average normalized relative error below
12% in all testbed experiments.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design- Wireless Communication
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1. INTRODUCTION
Managed enterprise WLANs and wireless mesh networks

regularly encounter underperforming links, i.e., links with
throughput below an acceptable value determined by the
operator. A key corrective action available to the network
manager is to throttle other nodes that may be hindering
the underperforming link. However, to do so first requires
identifying which node to throttle. While it is clear it should
be a “neighbor,” there may be a large set of candidate nodes
for which throttling can have vastly different effects, includ-
ing no effect on the under-served link. Moreover, it is not
immediately evident how much throttling any node will in-
crease the throughput of the targeted under-served link due
to complex node interactions and coordination.1

In this paper, we design MIDAS, a framework that uses
online measurements of network performance to infer the
most hindering nodes which cause a target link to be under-
served or to obtain poor performance. Moreover, MIDAS
identifies effective management actions to increase the per-
formance of the under-served link by appropriately limiting
the transmission rates of the hindering nodes. Finally, we
implement MIDAS on real hardware and investigate its per-
formance in an indoor testbed and simulation.

MIDAS employs a methodology comprising three proce-
dures: i) measurement collection, which gathers reports from
each node consisting of a small set of passive time-aggregate
measurements; ii) inference, which infers the coordination
among the transmissions of different sets of nodes using the
reported measurements; iii) prediction, which utilizes the
inferred information to predict the throughput gain of any
target link, corresponding to rate-limiting different conflict-
ing nodes. In particular, our contributions are as follows.

First, we introduce the concept of Activity Share which
characterizes the coordination and interference among any
set of conflicting nodes. The throughput of a link is influ-
enced by the sender busy time (i.e., the more the sender
senses the medium busy the less it can transmit), and the
collision probability (i.e., even if it can transmit, its trans-
missions are corrupted). Coordination is critical to under-

1Network managers have a number of options for mitigation,
including moving sets of APs or clients to alternate frequen-
cies. MIDAS could equally be applied to such strategies (it
would identify the best ones to move and could recompute
the new throughputs). However, evaluation of such alter-
nate mitigation schemes is beyond the scope of this paper.



stand how different nodes contribute to busy time and colli-
sion probability of each other. In fact, a sender’s busy time
is not simply the sum of the transmission times of its neigh-
bors, as neighbors which are hidden from one another may
transmit simultaneously. Analogously, link collisions are not
the sum of the collisions with each hidden terminal, because
multiple hidden terminals may collide with the same packet.
Therefore, knowing which conflicting nodes are destructive
to a link requires understanding their coordination. In order
to capture node coordination, we define network state as a
set of transmitting nodes; accordingly, in each time instant
the network is in a unique state. We define Activity Share
as the time share the network spends in each possible state
in a given interval. That is, the Activity Share is a vec-
tor including, for each possible set of nodes, the fraction of
time they spend transmitting simultaneously. Note that the
Activity Share depends not only on the topological relation-
ships between the nodes as determined by carrier sensing
and link interference, but also on the transmission rate and
pattern of each node under the current traffic conditions.
Furthermore, since the transmission pattern of any node de-
pends on the transmission pattern of its neighbors, and the
transmission pattern of its neighbors depends on the trans-
mission pattern of their neighbors (and thus recursively of
all nodes in the network), the Activity Share captures the ef-
fects of global network interactions that extend beyond node
locality. In particular, the Activity Share captures the co-
ordination among the transmissions of any set of conflicting
nodes as determined by the current global network condi-
tions. In contrast, alternative indicators, such as the indi-
vidual node transmission rates, are insufficient to determine
how conflicting nodes influence the target link, since they do
not capture the coordination. For example, the conflicting
node with the highest transmission rate might mostly trans-
mit simultaneously with others, such that limiting its rate
may scarcely benefit the target link. We will show how the
manager can utilize the Activity Share as a tool to under-
stand the network behavior and to determine a strategy to
change it, e.g., to increase the throughput of a congested or
underperforming link. Unfortunately, the estimation of the
Activity Share is challenging, because it cannot be locally
measured by the nodes. In fact, during the reception of mul-
tiple overlapping packets, nodes cannot identify all senders,
and thus recognize the network state.

Second, we design a tool to infer the Activity Share using a
small set of passively collected, time-aggregate local channel
measurements, reported by every node. Inferring the Ac-
tivity Share requires computing the temporal distribution
of the different network states, i.e., how long the network
spent in each of them. We develop a technique to eliminate
infeasible distributions by incorporating physical rules (e.g.,
the busy time of a node should coincide with the sum of
the durations of the states in which its neighbors transmit
and that node does not). Unfortunately, there can be an in-
finite number of temporal distributions that yield identical
measurements. Consequently, we penalize unlikely distribu-
tions by incorporating protocol rules (e.g., the occurrence
of states in which adjacent nodes simultaneously transmit is
unlikely), and select a representative by using a statistical
approach based on entropy considerations. To further limit
the complexity of our problem, we propose a technique to
reduce its dimensions, by actually eliminating the unlikely
distributions.

Third, we develop a tool to predict the throughput in-
crease achievable on the target link by rate-limiting the links
formed by the target link’s conflicting nodes. The Activ-
ity Share permits assessment of the current network condi-
tions; however, it lacks predictive power to identify effective
rate-limiting actions and to anticipate their outcomes. The
challenge is to understand how changing the transmission
time of a conflicting node affects the Activity Share, and
subsequently how the new Activity Share affects the target
link’s throughput. We design a simple throughput predic-
tion model that derives its inputs from the current network
conditions, i.e., from the inferred Activity Share, thus rep-
resenting the first throughput model based on online mea-
surements.

Fourth, we extensively evaluate the accuracy of MIDAS
by combining testbed experiments and simulations. We im-
plemented MIDAS on real hardware and deployed it on an
indoor testbed, where we investigated its sensitivity to dif-
ferent network settings under real channel conditions. The
results show that MIDAS infers the Activity Share with high
accuracy, i.e., with an average normalized relative error as
low as 5%. In order to extend our validation to a broader
set of scenarios, we performed numerous simulations. A key
finding is that, by rate-limiting different conflicting nodes
for the same fixed amount, the throughput of the target link
can increase from 7% to 172% of the rate-limited quantity.
We also validate the effectiveness of the Activity Share in
supporting throughput prediction, and show that MIDAS
anticipates the benefits of alternative rate-limiting actions
with an error lower than 20% of the rate-limited quantity.

The remainder of the paper is organized as follows. In
Section 2 we present MIDAS, and define the Activity Share.
We develop a technique to infer the Activity Share in Section
3. A throughput prediction tool using the Activity Share is
described in Section 4. Section 5 presents testbed and sim-
ulation results. Finally, Section 6 overviews related works,
and Section 7 concludes the paper.

2. THE MIDAS FRAMEWORK
A link can be considered under-served due to a discrep-

ancy between the network manager’s targeted link through-
put and the actual throughput. The network manager’s
policy for setting target throughputs (incorporating factors
such as fairness, QoS, pricing, offered load, etc.) is beyond
the scope of this paper. The objective of MIDAS is to deter-
mine the causes of the poor performance and design correc-
tive actions.2 While local node observations can point out
problematic links, in general the causes of the low through-
put cannot be locally inferred. For instance, in the case of
high packet drop rate, the local measurements can seldom
determine the hindering nodes. MIDAS helps improving the
problematic link by inferring the impact of hindering trans-
mitters and by rate-limiting the most destructive flows.

The severity of link hindering interactions mainly depends
on three factors: i) network topology: nodes’ pairwise rela-
tions as determined by carrier sensing and interference affect
the form of interaction, e.g., hidden terminals are responsi-
ble for transmission corruptions, while carrier sensed nodes
affect deferral; ii) link transmission rates: nodes that trans-

2In this paper, we only consider 802.11 MAC issues, e.g., we
do not address throughput losses due to TPC dynamics, or
low received signal strength.



mit few packets are less likely to interfere with a target link;
and iii) link transmission coordination: the number of link
packets corrupted by a hidden terminal depends on how fre-
quently a link sender and hidden terminal transmit simul-
taneously. Note that transmission rates and coordination
strongly depend on the traffic load of each node.

In this section, we introduce a novel metric termed Ac-
tivity Share which captures the coordination between any
possible set of nodes, by measuring the fraction of time they
transmit simultaneously. Even though the Activity Share
does not directly measure the interference between nodes,
it reflects node interactions. Thus, the Activity Share is af-
fected by node interference relationships, traffic load, MAC
protocol, etc. We will show how MIDAS can utilize the Ac-
tivity Share to evaluate the potential effects of alternative
corrective actions (see Section 4). We will also show that the
Activity Share cannot be locally observed by the network
nodes and describe how it can be inferred from measure-
ments collected by the nodes. Note that, in contrast to the
Activity Share, alternative indicators that evaluate pairwise
conflicts between interfering links taking into consideration
only topological information (e.g., the conflict graph [9]) miss
the important dynamic information about the coordination
of the transmissions of multiple nodes.

2.1 The Activity Share: Fundamental Element
of Network Observation

As previously explained, our management framework aims
to identify the originating causes of under-served links and to
increase their throughput by rate-limiting conflicting nodes.
In this study, we consider 802.11 stationary multihop wire-
less networks, including enterprise WLANs and mesh net-
works. In such networks, nodes can affect the throughput
attained on a link (sender-receiver pair) by two key means:
i) reducing the time the medium is perceived as free by the
sender, thereby forcing the sender to defer; ii) corrupting
the packet reception at the receiver end, i.e., colliding. In
multi-hop topologies, despite the use of the carrier sensing
mechanism, several nodes that are in conflict with a specific
transmitter can potentially transmit simultaneously. Hence,
it is challenging to anticipate the benefits of rate-limiting
conflicting links on the sender busy time or collisions of the
target link, and thus on its throughput. Even knowing the
exact packet transmission rate of each node in conflict with
the link of interest is not sufficient, because the throughput
gain mainly depends on the coordination among the con-
flicting nodes as illustrated in the example below.

Example. The following example shows that node coor-
dination is the key to understand the effectiveness of rate-
limiting conflicting nodes to improve the throughput of an
under-served link. Let us consider the simple wireless net-
work depicted in Figure 1(a), where a dotted line connecting
two nodes indicates that the two nodes are within carrier
sensing range. The link (a, b) is identified as under-served;
the goal of the network manager is to assess how decrement-
ing the transmission rates of the conflicting links formed by
nodes 1 and 2 can benefit the throughput of link (a, b). Since
nodes 1 and 2 are not coordinated by carrier sensing, they
can transmit simultaneously. Figure 1(b) depicts a typical
timeline of the transmissions of the three nodes. The con-
tinuous deferral is the cause of the performance issue of link
(a, b); in fact, (a, b) can transmit only when both nodes 1
and 2 are silent. Thus, decreasing the transmission rate of

(a) (b)

Figure 1: Example of transmission alignment due to
(lack of) carrier sensing.

only one of them will produce a minimal benefit to (a, b);
this is because only a small portion of the released airtime
will result in free airtime for (a, b). The analysis of the co-
ordination between the conflicting nodes 1 and 2, and in
particular of the large overlap between their transmissions,
can promptly lead to this conclusion. Obviously, this is only
a simple case, where the large overlap between the transmis-
sions of 1 and 2 is not surprising; however, in more complex
topologies with several conflicting nodes, it is not clear how
to determine node coordination and its effect.

Network State and Activity Share. The key to un-
derstanding how conflicting nodes affect an underserved link
is to determine the time they spend transmitting simultane-
ously. For instance, in the example in Figure 1, the trans-
missions of nodes 1 and 2 mostly overlap, anticipating a
small gain in free airtime perceived by the link (a, b), from
the reduction of the transmission times of either one. Fur-
thermore, the higher the number of nodes in conflict with
a target link which can potentially transmit simultaneously,
the lower the gain from limiting the transmission time of a
single node. For instance, if in the example instead of two
uncoordinated nodes in conflict with link (a, b), there were
three or more such nodes, the free airtime gained by rate
limiting a single node would be even lower.

Let us consider an N-node network. To formalize the
concept of simultaneous transmission of a set of nodes, we
define network state and Activity Share as follows.

Definition 1. The Network State !D denotes the trans-
mission status of each node in the network. !D is an N-
dimensional vector comprising an entry for each node that
indicates whether the node is transmitting or idle in the
state. !D = (d1, d2, . . . dN ), di ∈ {0, 1}, where di = 1, 0 in-
dicates that node i is transmitting or not, respectively. Note
that each network state is univocally identified by the set of
transmitting nodes.

Since there are N nodes in the network there are 2N pos-
sible states denoted by !D1, !D2, . . . , !D2N . The network tran-
sitions in time through a succession of network states. The
Instantaneous Network State at time t0, !D(t0), is the state
of the network at time t0, i.e., !D(t0) = !Dj iff the network

state at time t0 is !Dj .
Next, we define the Activity Share which is the time share

the network spends in each state per time unit.

Definition 2. The Activity Share of the network state
!Dj , denoted by AS(L, !Dj), is the fraction of time during
the interval [0, L] for which the network was in state !Dj ,

i.e., AS(L, !Dj) = 1
L

∫ L

0
1[!D(t)=!Dj ]

(t)dt, where 1[!D(t)=!Dj ]
(t)

denotes the indicator function such that 1[!D(t)=!Dj ]
(t) = 1 if



the network state at time t is !Dj , and 0 otherwise. The sum
of AS(L, !Dj) over all possible states adds to one:

2N∑

j=1

AS(L, !Dj) = 1 ∀L (1)

We separately denote as Activity Share, !AS, the distribu-
tion of time among all states that the network visited during
the time interval [0, L], i.e., !AS = {AS(L, !Dj),∀ !Dj}. Note
that if the network is stationary limL→∞ AS(L, !Dj) is the
probability that the network at any time instant is in state
!Dj . In the following, we consider L large enough to satisfy
stationarity, and we drop L from our notation.

The estimation of the Activity Share is challenging be-
cause it cannot be locally measured by the nodes. Specif-
ically, the nodes cannot identify the transmitters of all the
packets they carrier-sense. In fact, some of the overlapping
packets (e.g., sent by 1 and 2 in Figure 1) may collide at the
intermediate nodes (e.g., node a), preventing the decoding of
at least one of them. Another obstacle is the strength of the
received signal, which may exceed the carrier sense threshold
or generate collisions, but not be sufficiently greater than the
background noise to permit the decoding of the packet. In
order to overcome these challenges, it is necessary to analyze
the combined measurements of different nodes.

2.2 The Measurements
In MIDAS, each network node k continuously collects in-

formation, and delivers a report Rk to the manager at every
report interval. In this paper, we suggest a new scheme
which we will use to infer Activity Share, given a set of
measurements reported by the nodes !R = {R1, R2, ...RN}.

A tradeoff emerges between the amount of information
contained in Rk and the estimation accuracy of the Activity
Share. If Rk contained complete traces of the exact times
and durations of all transmissions of node k, the manager
could use the reports to reconstruct a global trace of the
transmissions in the network (such as in Figure 1(b)), and
hence obtain the Activity Share by inspection. However,
the amount of information that needs to be collected and
the timely delivery of such traces would overwhelm the net-
work resources. For example, a set of traces satisfying our
requirements is collected in [5]; therein, the authors show
that the overhead is between 100 kbps and 500 kbps per
node, without even considering the multiplicative effect of
multi-hopping [3].

We consider a highly simplified and easily measured set of
inputs Rk consisting of information passively collected from
the local network card and time averaged over the report in-
terval. Each node observes the local channel in three states:
T if the measuring node is transmitting; B if the node is
not transmitting but the total received energy exceeds the
carrier sensing threshold; I if neither the received energy
exceeds the carrier sensing threshold, nor the node itself is
transmitting. Notice that the state B reflects the activity of
all carrier sensed nodes and does not distinguish between dif-
ferent transmitters. The report Rk includes the time shares
Tk, Bk, Ik node k observed the channel in any of the three
states during the report interval. Clearly, Tk +Bk + Ik = 1,
∀k. An implementation of the measurement collection tool
is presented in Section 5.1. In contrast to trace-based solu-
tions, our reports only include two numerical values.

3. THE INFERENCE TOOL
The reconstruction of the Activity Share from the reports

is challenging because the time-average measurements in !Rk

are the result of the transmissions either of the individual
node k (i.e., Tk) or of all its neighbors (i.e., Bk). In both
cases, it is not possible to locally determine the overlapping
intervals of subsets of neighbors, and of sets of nodes that
do not share neighbors. In this section, we will show how to
overcome this issue; our solution consists of three elements.
First, in order to obtain accurate estimations, we use the !R
inputs to constrain the domain of the feasible !AS (Section
3.2). Since the constraints do not generally identify a unique
solution, we propose an optimization problem to choose a
single representative !AS (Section 3.3). The last element
of the solution addresses the computational complexity of
the proposed problem, and reduces the dimension of the
!AS solution space using protocol rules of 802.11 (Section
3.4). In the experimental results in Section 5 we consider
practical implementation issues, such as report losses and
time-varying channel.

3.1 Network Model
We consider a single-radio, single-channel network, and

we abstract it as a graph G = {V, E}, where the vertices V
represent the N nodes, and the edges E represent the carrier
sensing relationships among the nodes. The existence of a
sensing edge (i, j) ∈ E means that node i carrier senses
transmissions from node j and vice versa. We define the set
of the nodes that node i carrier senses as Vcs(i) = {j|(i, j) ∈
E}. We assume that the topology of the graph with respect
to E is fixed during any observation interval and known
to our inference tool (e.g., via offline link profiling [17], or
passive online estimations [12]).

3.2 Report-based Constraints
In order to obtain an accurate estimation of the Activity

Share, we use the reported measurements !R to constrain the
feasible domain. Since the local observations of the channel
of any node provide information about the cumulative dura-
tion of sets of network states, the actual !AS must satisfy the
constraints imposed by all local observations, and hence lies
in the feasible region the observations define. Accordingly,
we can derive the following constraints:

∑

j:(Dk
j =1)

AS( !Dj) = Tk (2)

∑

j:(Dk
j =0)∧(∃s∈Vcs(k):Ds

j=1)

AS( !Dj) = Bk (3)

∑

j:(Dk
j =0)∧(Ds

j=0,∀s∈Vcs(k))

AS( !Dj) = Ik (4)

∀k ∈ [0..N ]

where Dn
j denotes the n-th component of the !Dj vector.

Equation (2) constraints the time share each node is trans-
mitting: the sum of the Activity Shares of states in which
node k transmits should be equal to the fraction of time k
transmitted. Equation (3) is related to the busy time of the
nodes. In our network model, the state of a node k is busy if
the node is not transmitting and any of the nodes in Vcs(k)
is transmitting. Hence, the Activity Shares of states, in



which any of the nodes in Vcs(k) is transmitting and node
k is not, sum up to Bk. Notably, also the busy time of
the nodes carries information about the Activity Share, by
inducing constraints on the duration of the network states
including transmissions from any neighboring node. The as-
sumption that the links in E are fixed plays a crucial role
in enforcing this constraint. Even though this is a simplify-
ing assumption, related research shows that threshold-based
carrier sensing relationships can be reasonably well approx-
imated as binary [16]. Our experimental results, and a spe-
cific discussion in [13], evaluate the effects of this assump-
tion. Equation (4) relates to the idle time of the nodes, and
can be obtained with considerations analogous to the previ-
ous two. Simple considerations show that any of the three
equations associated with each node is redundant with re-
spect to the remaining two and Equation (1). This fact can
be easily verified by noticing that the state indexes used for
the three constraints (2), (3), (4) are a partition of the whole
set of indexes, thus they sum up to the left hand-side term
of Equation (1). Thus, we consider Equation (4) redundant
for all nodes.

3.3 Entropy-based Statistical Solution
In this subsection, we show how to determine a represen-

tative !AS close to the actual !AS occurred during the mea-
sured interval. The representative !AS should satisfy the
report constraints, since the actual !AS determines the re-
ported measurements. However, the constraints we defined
do not identify in general a single !AS, but rather a feasi-
ble solution domain. Each Activity Share distribution !AS
in the domain defined by the reports would have generated
the exact same observations obtained by the nodes; hence,
the selection of any of these !AS is admissible. However, a
key observation is that not all feasible solutions are equally
likely, e.g., 802.11 introduces a bias against states that in-
clude simultaneous transmissions of mutually carrier sensing
nodes. We formalize this bias using the a priori distribu-
tion of the states, and we select our representative !AS as
the feasible solution closest to the a priori distribution.

Protocol-driven a priori information. As shown in
Section 2.1, we can give a statistical interpretation of the
components of the Activity Share. Each AS( !Dj) corre-
sponds to the probability the network is in the state !Dj

at a random time instant. Because of the carrier sensing
behavior of 802.11, not all network states have a priori
identical probabilities of occurrence, i.e., AS( !Dj) is not a

priori uniform (i.e., equal to 1
2N

) over all states !Dj . In
fact, 802.11 carrier sense aims to prevent the occurrence of
states where neighboring nodes transmit simultaneously, i.e.,
{ !Dj | ∃k, l : l ∈ Vcs(k), Dk

j = 1, Dl
j = 1}. Practically, two

neighbors can transmit simultaneously only if their back-
offs expire within a slot interval, while non-adjcent nodes
can initiate their transmissions independently. As a conse-
quence, among the admissible !AS, our scheme should favor
the !AS that do not assign large probabilities to states in-
cluding neighbor transmissions.

We model the protocol behavior of 802.11 by identify-
ing an a priori distribution that assigns probabilities to the
states !Dj unequally. Since trying to capture the exact prior
probability of each state according to 802.11 is very com-
plicated, we use a coarse-grained approximation. Nonethe-
less, we will show in Section 5 that our technique attains
high accuracy. Our fundamental idea is to assign to the

network states a priori probabilities exponentially decreas-
ing with the number of adjacent transmitters they contain,
e.g., the states containing two pairs of adjacent transmit-
ters have half the probability of those that contain only one
pair. Notice that this assignment partitions the states !Dj in
classes, where all the states in the same class contain iden-
tical numbers of adjacent transmitters, and thus have equal
probabilities. For instance, class 0 includes all states that
do not contain adjacent transmitters and have probability
p, class 1 includes all states that contain only one pair of
adjacent transmitters and have probability p/2, etc.

Minimum Relative Entropy !AS inference. In the
previous paragraph, we formalized our knowledge of the pro-
tocol behavior by using an a priori distribution of !AS. Our
objective is to select the feasible !AS closest to the defined
a priori distribution. We propose to use the concept of
Kullback-Leibler distance [6] to quantify the distance be-

tween two distributions, and select the representative !AS as
the feasible solution that minimizes such distance from the a
priori distribution. Accordingly, the problem is formulated
following the Minimum Relative Entropy Principle.3 Out
of the feasible solutions that have equal Kullback-Leibler
distance from the a priori distribution, the Minimum Rela-
tive Entropy Principle favors the solutions that spread the
probability of the states in the same class as evenly as pos-
sible. In fact, in absence of any other information about the
802.11 protocol behavior, all states that the a priori distri-
bution assigns to the same class have identical probability.
Hence, any different probability assignment would introduce
an unmotivated bias.

The !AS Inference problem. We formulate the !AS
inference problem as:

min
x

γ−1∑

j=0

xj log
xj

wj
(5)

Φ · x = T

Ψ · x = B

1′ · x = 1

x ≥ 0

where γ is the cardinality of the set of admissible network
states (2N in this case); x is a γ-dimensional vector, whose

j-th entry is AS( !Dj); w is the prior distribution of the net-
work states; Φ is an N × γ matrix, whose ij-th entry is 1
if Di

j = 1, 0 otherwise; Ψ is an N × γ matrix, whose ij-
th entry is 1 if Di

j = 0 and ∃s ∈ Vcs(i) : Ds
j = 1; T and

B are N-dimensional vectors, whose k-th entries are the
measurement results Tk, and Bk respectively. Notice that
the objective function is the relative entropy between the
solution x and the prior distribution w; further, the first
and second constraints (each N-dimensional) correspond to
Equations (2) and (3) respectively, while the third constraint
(1-dimensional) corresponds to Equation (1).

3.4 Protocol-based State Space Reduction
The solution space of the !AS inference problem is gen-

erated by 2N variables, i.e., the Activity Share components
that correspond to all possible network states; as the number
of network nodes N increases, the exploration of such a large

3Note the that minimizing the relative entropy is equivalent
to maximizing the expected value of the log-likelihood.



space to find the best candidate solution becomes computa-
tionally complex. In order to reduce space and complexity,
we again leverage the protocol properties of 802.11 which
permit to discover unlikely states.

As we observed, due to carrier sensing, the occurrence of
!AS that assign large probabilities to states including neigh-
boring transmissions is unlikely. We take advantage of this
consideration by excluding from the solution space the !AS
with AS( !Dj) > 0, for any !Dj including neighboring trans-
mitters. Practically, this is equivalent to reducing the num-
ber of Activity Share components, by eliminating those cor-
responding to the unlikely !Dj . In terms of graph theory,
the set of transmitters in any allowed state is an indepen-
dent set of the graph G. Thus, the number of network states,
and of Activity Share components to be estimated, reduces
to the cardinality of the set of the independent sets, which
is generally still exponential (in graphs with bounded node
degree [7]) but smaller than 2N .

By using this simplification, the resulting inference prob-
lem can be obtained from (5), by equating γ to the cardinal-
ity of the set of the independent sets of the network and by
replacing wj with 1

γ , ∀j. The latter substitution reduces the
Minimum Relative Entropy objective to Maximum Entropy:
the probability of all the states in the !AS solution will be
spread as evenly as possible according to the constraints.

In our experiments, we verified that the enhancement de-
scribed above permits to double the network size that we
can solve with similar time budget. While simplifying the
computation, the illustrated state space reduction is only an
approximation of the reality and may penalize the accuracy
of the obtained solution. We investigate the performance
of the state space reduction in Section 5.3, while we adopt
the full state space representation in the testbed results in
Section 5.2.

4. MITIGATION OF HINDERING
TRANSMISSIONS

In this section, we address our goal of improving the through-
put of under-served links. Specifically, we show how MIDAS
uses the Activity Share to predict how limiting the transmis-
sion rate of any hindering node will benefit the throughput
of the problematic link. Our solution is comprised of two
procedures: i) we address the main challenge of estimat-
ing the Activity Share after the management operation; ii)
based on the new Activity Share, we estimate the potential
throughput gain that any single link can obtain, in particular
the target link. With regard to the first procedure, the key
technique we devise follows a differential approach in which
we consider that small deviations from the current network
conditions have limited effect on the nodes other than the
rate-limited and the under-served. The second procedure
uses a simple model that identifies how the Activity Share
affects the busy time and collision probability of the under-
served link. In this section, we discuss each step separately.

4.1 Evolution of the Activity Share after Rate-
limiting

In order to obtain the potential throughput gain of the
under-served link by rate-limiting a specific node (Section 4.2),
we first compute the Activity Share after rate-limiting. Our
methodology follows a differential approach that assumes
that small changes on the transmission rate of a node do

not affect the relative durations of the states in which that
node transmits. In particular, we assume that the Activity
Share of the states in which the rate-limited node transmits
will reduce in proportion to their values before rate-limiting.
Note that based on the differential approach, the total time
the nodes transmit, other than the under-served and rate-
limited nodes, is not affected by the change. In practice,
this can be realized, e.g., by having the transmission rates
of neighboring links fixed to the value before the manage-
ment operation. In the following, we illustrate the analyti-
cal aspects of the differential approach, while its accuracy is
implicitly evaluated by the experimental results in Section
5 (see in particular, Figures 5 and 12-14).

Denote ASo (Activity Share old) and ASn (Activity Share
new) the Activity Share before and after the rate-limiting
action, respectively. Let us consider the case of rate-limiting
the packet transmission rate (i.e., at the MAC layer) of a sin-
gle conflicting node k of a quantity RLk. We define { !Dk0

l }
the states in which k does not transmit (i.e., Dk

l = 0), and
{ !Dk1

l } the states in which k does (i.e., Dk
l = 1), and we

establish that the j-th states, i.e., !Dk0
j and !Dk1

j , differ only

for the k-th entry, i.e., !Dk0
j = {dj1 . . . djk−1 0 djk+1 . . . djN}

and !Dk1
j = {dj1 . . . djk−1 1 djk+1 . . . djN}. Using the differ-

ential approach, the Activity Share of the network states (in
{ !Dk1

l }) in which k transmits decreases proportionally to the

duration of those states in ASo, and the state !Dk0
j benefits

from the decrease of the state !Dk1
j , for all j. Formally,

ASn( !Dk1
j ) ≈ ASo( !Dk1

j )−
ASo( !Dk1

j )
∑

l:Dk
l =1

ASo( !Dl)
· h ·RLk (6)

ASn( !Dk0
j ) ≈ ASo( !Dk0

j ) +
ASo( !Dk1

j )
∑

l:Dk
l =1

ASo( !Dl)
· h ·RLk (7)

where h is the duration of the packets sent by k, and RLk

is the rate-limiting amount of node k in terms of packets per
second. For ease of exposition, we assume fixed duration of
the data packets transmitted over all links. Next, we will
use the ASn to obtain the new collision probability of the
under-served link.

4.2 Relationship between the Collision
Probability of the Under-Served Link and
the Activity Share

According to [8], we can express the maximal through-
put of any link after the rate-limiting action by estimat-
ing its busy time and collision probability. The busy time
of a link can be obtained from the new Activity Share us-
ing Equation (3). In this section, we show how to use the
new Activity Share to determine the collision probability of
any link, and in particular of the under-served. Given the
Activity Share, the main challenge in computing the colli-
sion probability is in the transformation of the cumulative
time the colliding nodes have transmitted simultaneously
into the number of collided packets. For instance, let τ be
the sum of the Activity Share of the states where colliding
nodes a and b transmit simultaneously; since (assuming a
fixed packet duration h) a packet can collide at most with
two different packets, the total number of collided packets



between these two nodes can be any integer in the range
[ τh , 2min{transmitted packets by a or b}]. In the following,
we use a binary channel assumption; accordingly, a packet
on (i, j) is corrupted if it overlaps for any arbitrary small
duration of time with any other packet reception at j.

In order to compute the collision probability pi,j of a prob-
lematic link (i, j), we determine the success probability, i.e.,
the probability that the transmission of a packet from i to
j entirely fits within a time interval during which its hidden
terminals are not transmitting. To estimate this probability,
we model the transmission attempts of i as the sampling of
an ON/OFF process representing the aggregate transmis-
sions of all the hidden terminals of i [8, 17]. The ON period
is the interval during which at least an hidden terminal is
transmitting, the OFF period is the gap in the activity of all
the hidden terminals that node i has to discover randomly.

In the analysis of this process, we make the following as-
sumptions. 1) In general, the transmissions of the hidden
terminals are not coordinated and may overlap; thus, the
durations of the ON and OFF periods are variable. In this
case, it is a common assumption to model them distributed
exponentially. 2) The duration of an ON period can range
from very short, e.g., an individual ACK transmission, to
much longer than the duration of a data packet h, in case
of consecutive overlapping transmissions of different hidden
terminals. We balance these cases, by approximating the
average duration of an ON period, T̄ON , with h. 3) Condi-
tioned on the fact that i can transmit, i.e., that the nodes
in Vcs(i) are not transmitting, we assume that the transmis-
sions of i occur at random points in time.

In order to succeed, a packet transmitted on (i, j) needs
to start during an OFF period, and be entirely received
during the OFF period. Thus, using assumptions 1) and
3), we can write the collision probability as: pi,j = 1 −

T̄OFF
T̄ON+T̄OFF

e
− h

T̄OFF [8]. Using assumption 2) permits to ob-

tain pi,j as a function of T̄ON
T̄ON+T̄OFF

. In the remainder, we

show how to express T̄ON
T̄ON+T̄OFF

(and thus pi,j) as a function
of the Activity Share.

In order to do this, we compute the total duration the pro-
cess is in ON and {ON or OFF} states during a measure-
ment interval ∆T : the ratio between these two quantities is
equal to the ratio of their averages T̄ON

T̄ON+T̄OFF
. Recall that

the ON and OFF states model the sampling of node i of
the channel at the receiver, and that node i cannot sample
the ON/OFF process (i.e., transmit) during the transmis-
sions of nodes in Vcs(i). Hence, we prune all time intervals
in which at least one of i’s neighbors is transmitting, i.e.,
we consider only time intervals in which no node in Vcs(i)
is transmitting. Thus, the whole duration of the ON-OFF
process in ∆T is (1 − Bi)∆T . Let us denote Vht(i, j) the
set of hidden terminals of (i, j). Then, the whole duration
of the ON period in ∆T is the time at least one hidden ter-
minal is transmitting and no node in Vcs(i) is transmitting.
By using the Activity Share, we denote the latter interval
as ASHT∗∆T , where

ASHT∗ =
∑

l:(∃m∈Vht(i,j):D
m
l =1)∧(Dn

l =0,∀n∈Vcs(i))

AS(Dl) (8)

Finally, the identity between T̄ON
T̄ON+T̄OFF

and the ratio of
their total durations in ∆T discussed above leads to

T̄ON

T̄ON + T̄OFF
=

ASHT∗∆T
(1−Bi)∆T

≡ ASnormHT∗ (9)

By replacing (9) into pi,j , we can write:

pi,j = 1− (1− ASnormHT∗)e
− ASnormHT∗

1−ASnormHT∗ (10)

which expresses the collision probability of a link using
exclusively the Activity Share. Using Equation (10) we can
compute the throughput according to [8].

5. PERFORMANCE EVALUATION
In this section, we validate MIDAS through an extensive

set of testbed and simulation experiments. After introduc-
ing our experimental platform and implementation, we in-
vestigate the performance of MIDAS in a real testbed de-
ployment. Finally, we extend the evaluation by simulating
a broader set of topologies with larger numbers of nodes, in
order to determine the sensitivity of the tool to node density
and traffic load, and show its robustness to missing reports
and short report intervals. Additional results can be found
in [13].

5.1 Experimental Testbed
WARP. To validate our MIDAS, we used the Wireless

Open-Access Research Platform (WARP) developed at Rice
University [1]. The platform, built around a Xilinx Virtex
processor, includes the MAX2829 radio chipset that provides
RSSI readings. Moreover, WARP implements an OFDM
layer similar to 802.11a. In our configuration, the boards op-
erate at 6 Mbps using BPSK modulation, and are equipped
with a 3 dBi antenna; all boards are controlled by a laptop
via Ethernet connections.

Inference Tool Implementation. The implementation
of the inference tool consists of two basic components. i) The
transmission duration counter measures the time duration
the radio is in transmission state by timing the functions
that control the transmission operations. ii) The sub-packet
RSSI time sampler measures the time duration the received
signal strength, including noise and interference, exceeds a
given threshold. In contrast to existing off-the-shelf drivers,
such as MadWifi for Atheros chipsets,4 which only provide
an RSSI sample per packet, our implementation samples the
RSSI values at regular time intervals shorter than the packet
duration, and compares them to the carrier sense threshold.

Validation Tool. Two additional components were im-
plemented only for validation purposes. i) The fast RSSI
sampler behaves identically to the sub-packet RSSI time
sampler described above, but supports higher sampling rates
via a digital design, thus improving the precision of the busy
time estimation. ii) The trace collection logic provides the
ground truth of our experiments by collecting and storing
on the board’s memory the timestamps and durations of
all radio-transmitted packets and sends batch traces to a
control station. The individual node traces are not used
by the inference tool, but permit to reconstruct offline a
network-wide global trace of the transmitting activity of all
nodes and to extrapolate the actual Activity Share. In order
to synchronize the individual traces from different nodes, a

4Multiband Atheros Driver for Wifi. Available at http:
//madwifi.org/



control station issues an Ethernet broadcast to the boards
at the beginning of each experiment, which is used to reset
their clock. We verified that our technique achieves clock
offsets below a few micro-seconds.

Testbed Setup. We conduct our experiments on a five-
node indoor testbed. In order to verify the robustness of MI-
DAS to different node densities, we alternately deployed our
nodes in different topological configurations. As a reference
for the reader, we list the locations used in our topologies in
decreasing order of density, with reference to Figure 2: in the
single-hop topology S1 all nodes are next to each other close
to position b; in the multi-hop topology M1 the nodes are
located in the positions {a, b, c, d, e}; in the multi-hop M2
the nodes are in positions {a, b, c, d, f}. Each board trans-
mits 1000-byte data packets, with constant inter-packet time
whose value depends on the experiment. Each experiment
run lasts 10 seconds and, where not differently specified, the
reported results are cumulative over 10 runs.

Figure 2: Layout of our testbed deployment.

5.2 Testbed Results
Experimental Methodology. We evaluate the accu-

racy of the inference tool, by assessing its predictions in dif-
ferent testbed and simulation settings. At the end of each
experiment performed, we collect a single report from each
node including its transmission time and busy time, which
represent the parameters T and B in Problem (5). We com-
pute the optimal solution of Problem (5) corresponding to
the collected values using the Matlab solver fmincon. We
establish the accuracy of the Activity Share inference by
comparing our estimations with the ground truth provided
by an omniscent centralized approach based on the collection
of detailed traces (see the Validation Tool above).

Sensitivity to Network Density. The network density
influences the information in the node reports as follows.
In low density conditions, the busy time reports constrain
the overlapping transmissions of a limited set of neighboring
nodes (see Equation (3)), thus providing redundant infor-
mation. For instance, in networks where each node has one
neighbor, the busy time of a node corresponds to the trans-
mission time of the sole neighbor, which is also reported by
the neighbor itself. However, in high density conditions,
more combinations of neighbor overlapping transmissions
can produce the same busy time value, thus increasing the
complexity of the decomposition of the busy time in its Ac-
tivity Share components. We investigate the effect of net-
work density on the Activity Share accuracy by running our
experiments on the three different topologies of our testbed.

Figure 3 shows the CDF of the normalized relative error
of the Activity Share estimation, where the relative error
committed in a state is weighted by the Activity Share of
that state, i.e., proportionally to the duration. The X-axis

indicates the normalized relative error committed, while the
Y-axis is in (non-dimensional) time ratio units. For instance,
a point in (0.1, 0.7) indicates that the network spends 70% of
the time in states where our inference tool commits an error
of 10% or less. All plots show that our inference technique
is extremely accurate under all density conditions; further,
S1 is the most accurate solution, while the M1 plot mostly
dominates M2. The respective average normalized relative
errors, i.e., the relative error committed in a randomly sam-
pled instant, are 4.6% for S1, 9.9% for M1, and 11.5% for
M2. These results are obtained for broadcast packets; how-
ever, similar values have been obtained using one-hop uni-
cast flows, i.e., 4.8% for S1, 6.1% for M1, and 7.7% for
M2. Figure 4 shows the scatterplot of the predicted and
actual Activity Share collected for one run of scenario M2.
Each value k on the X-axis denotes a network state !D cor-
responding to the binary representation of k (once mapped
the bit indices 0 through 4 to the nodes positioned in a, b,
c, d, and f , respectively, e.g., k = 20 maps to the network
state {10100}, i.e., where only nodes f and c transmit). The
graph shows an excellent agreement between the inferred Ac-
tivity Share and the actual Activity Share obtained from the
traces. Further, we can observe that a number of states have
very short durations: these typically include simultaneous
transmissions of nodes in carrier sensing range, which occur
less frequently than the others. We conclude that network
density increases the accuracy of the Activity Share inference
tool by reducing the amount of redundant information.

Sensitivity to Network Density is revisited in the simula-
tions in Section 5.3 for larger topologies.

Throughput Prediction Accuracy. We evaluate the
accuracy of the model in Section 4, by comparing its pre-
dictions with testbed experiments in the topology M1 with
single-hop flows {a → c; b → a; c → a; d → b; e → c}. For
each set of experiments, we consider a target under-served
link whose traffic is fully backlogged, and we perform a refer-
ence run, measuring the throughput of the target link when
all others transmit at 900 kbps rate. At the end of the
reference run, we collect the node reports, infer the Activ-
ity Share, and predict the throughput increase of the tar-
get link obtained by rate-limiting any of the four conflicting
nodes of a fixed quantity (400 kbps). Then, we perform four
additional runs on the testbed, alternately rate-limiting a
different conflicting node for the same 400 kbps quantity,
and we record the actual throughput gain of the target link.
Finally, we contrast the throughput gain predicted by our
model with the actual gain obtained in the testbed.

Figure 5 shows the CDF of the relative error for all pos-
sible target link/conflicting node pairs for 10 repetitions of
our scenario (200 predictions in total). The long tail of the
distribution is due to few combinations for which the actual
gain is very small (on the order of a few kbps); in those cases,
even an error of few packets is decisive in relative terms. In
terms of the absolute error, the predicted throughput gain
is on average less than 80 kbps different from the actual
throughput gain (i.e., 20% of the rate-limiting value of 400
kbps, or around 30% of the average actual throughput gain
of approximately 240 kbps).

Additional Results. In [13] we present several addi-
tional findings, including: 1) The accuracy of the inference
tool does not decrease for unsaturated and low traffic loads.
We ran a set of experiments with topology M1, where we
increased the traffic load of the nodes from 400 kbps to fully
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Figure 5: Throughput increase
estimation (testbed).

backlogged, and we found that in all cases we can predict
the Activity Share with a normalized relative error between
4% and 10%; 2) The throughput prediction tool does not
require that the conflicting nodes are equally loaded. We
ran an experiment with topology M1, where each conflicting
node had a traffic load uniformly distributed in [400 kbps,
900 kbps], and the relative error of the obtained throughput
prediction shows similar trends to Figure 5 (i.e., 18% of the
rate-limiting value of 400 kbps, or 26% of the average actual
throughput gain of approximately 280 kbps).

5.3 Inference Tool
In order to evaluate the inference tool on various topolo-

gies including a larger number of nodes, we performed an
extensive set of ns-2 simulations following the inference ex-
perimental methodology adopted in the previous section. In
this section, we first compare testbed and simulation. Then,
we evaluate the accuracy loss due to the state space reduc-
tion discussed in Section 3.4; all the results in the remainder
of the paper implement such enhancement. We conclude by
investigating the robustness of the inference technique to dif-
ferent network deployments, report losses, and short report
intervals. For lack of space, we only show inference results
for fully backlogged transmitters; however, our experiments
show that the accuracy of our solution increases with non
fully backlogged traffic due to reasons that will be clarified
below.

Simulation Settings. We consider scenarios where each
node generates 1000-byte UDP packets directed toward a
single neighbor, with constant inter-packet time. The traffic
is generated for 100 s at a fixed rate. We use the FreeSpace
propagation model, with node transmission and interference
ranges equal to 210 m. The size of the deployment area
depends on network density. Except for the experiment in
Figure 6, which is obtained using 802.11a at 6 Mbps, all
results in this section are obtained using 802.11b at 11 Mbps
data rate in order to experiment with different conditions.
We refer to the analogous simulation results obtained for
802.11a at 6 Mbps as needed.

Comparison between Testbed and Simulations. The
simulations introduce simplifications about actual channel
propagation and abstract operational details, such as the
WARP board’s packet processing time. For this reasons,
our first experiment compares the simulations and testbed
results. We consider the topologies S1 and M2 used in the

testbed section and fully backlogged nodes. Using the om-
niscent centralized approach, we extract the Activity Share
from the traces of simulation and testbed, and we compare
them. Figure 6 shows the actual Activity Share (Y-axis)
for all 32 possible states (X-axis) sorted similarly to Figure
4. The plots show an excellent agreement between the two
environments; the small discrepancies are due to non-ideal
packet processing times and carrier sensing relationships in
the testbed.

Effect of the Protocol-based State Space Reduc-
tion. The next experiment evaluates the effect of the protocol-
based reduction discussed in Section 3.4. We generate a
random topology of 10 nodes, with an average number of
7 neighbors per node, and we compare the Activity Share
obtained using the reduced (labeled “Protocol-based Reduc-
tion”) and the entire 2N state spaces (labeled “Power Set”).

Figure 7 shows the scatterplot of the Activity Share. The
X-axis is the actual value of the Activity Share, while the
Y-axis is the estimated value; each mark represents a sin-
gle state. As expected, the solution including the power
set is more accurate (crosses are closer to the line than cir-
cles). The concentration of circles on the X-axis close to the
origin are due to the states including adjacent nodes trans-
mitting, that the protocol-based reduction excludes. Note
that the actual Activity Share values of those states are
not significantly larger than 0, as the simultaneous trans-
missions of neighboring nodes are relatively unlikely. The
power set solution benefits from accounting for the unlikely
states, not only in the prediction of the Activity Share of
those states, but also of states including only independent
sets of transmitters. We conclude that the accuracy of the
inference tool increases by re-introducing the states excluded
by the protocol-based reduction, since those states contribute
to the reported measurements.

Sensitivity to Network Density. This subsection re-
visits the issue of network density on large topologies. In
contrast to Section 5.2, we run our scheme on the reduced
state space. We evaluate the normalized relative error be-
tween inferred and actual Activity Share, for 30 topologies
of 10 and 15 nodes, with average node neighbors from 3 to 13
and fully backlogged traffic. Recall that the normalized rela-
tive error is the relative error committed in a state weighted
by the Activity Share (i.e., proportionally to the duration)
of the state. Figures 8 and 9 show that our inference tool is
accurate under different densities, e.g., the network spends
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Figure 8: Inference sensitivity to
density (10 Nodes).

more than 70% of time in states whose relative error is below
20% for all tested densities in 10-node topologies. Figure 8
shows that for 10 nodes a density increase from 3 to 5 im-
proves the accuracy of the inference tool, while for density 7
the performance decreases. The average normalized relative
errors are 12.2%, 10.2%, 17% for densities 3, 5, and 7 respec-
tively. We ran this experiment also using 802.11a at 6 Mbps,
and we obtained normalized relative errors of 13.7%, 12.5%,
15.2%, respectively. Figure 9 shows a similar trend for 15-
node networks; the accuracy grows for density increase from
3 to 7, but it reduces for density 13. The average normal-
ized relative errors are 18%, 14%, 26%, for densities 3, 7,
and 13 respectively. Both figures clearly depict the existence
of an accuracy tradeoff related to the network density. As
explained in Section 5.2, the denser the network the more in-
formation is contained in the node reports. However, as the
network approaches a clique, the probability of simultaneous
transmissions of neighboring nodes increases, thus generat-
ing network states that are excluded by the protocol-based
state space reduction. For example, the accuracy degrades
for 10-node networks with density 7, and for 15-node with
density 13. In contrast, in 15-node networks with density
7, nodes in close proximity likely observe different channel
busy intervals, due to the diverse sets of carrier sensed nodes;
thus, their simultaneous transmissions are less frequent. No-
tice that traffic intensity has a similar effect on the validity
of the protocol-based approximation, and that fully back-
logged traffic is a worst case due to higher occurrence of ad-
jacent node transmissions. We conclude that, although the
protocol-based reduction is accurate in all evaluated settings,
high network densities challenge the validity of its approxi-
mation.

Incomplete Information. In the case of severe network
congestion, some of the reports could be lost. We evaluate
how report losses affect the accuracy of the inference tool, by
simulating the loss of up to five out of the ten reports trans-
mitted in 10-node networks, with densities of 3, 5 and 7.
Figure 10 shows the average normalized relative error of the
Activity Share computed out of all possible states obtained
from 30 random topologies, where we evaluate the lack of all
possible combinations of missing reports (bars indicate 85-
th percentiles). We observe that the performance gracefully
degrades as the number of missing reports increases. This
is because the reports of neighboring nodes are related: for
instance, part of their busy time is generated by transmis-
sions of common neighbors. We obtained similar results for

15-node scenarios. We conclude that our inference technique
is robust to report losses, due to inherent redundancy of node
reports.

Report Interval Length. In the previous simulations,
we used report intervals of 100 s, i.e., each node k sent one
report every 100 s including the busy and transmission time-
shares Bk and Tk that k measured during the same interval.
The report interval introduces tradeoffs of reporting over-
head (favoring long intervals), responsiveness to network
changes (favoring short intervals), and obtaining statisti-
cally significant data (favoring long intervals). We assess
how short report intervals affect the performance of the in-
ference tool, by measuring the accuracy in 10-node networks,
with density 5, for report interval lengths as low as 50 ms.
Figure 11 shows that the inference tool is accurate also for
short report intervals. In particular, as the report interval is
decreased from 100 s to 2 s, the accuracy decrease is mini-
mal. When the report interval is small and set to 50 ms, i.e.,
the reported values are based on approximately 10 packets
sent by each node, the accuracy decreases. The average nor-
malized errors are 10%, 11%, 14%, and 25% for the cases of
100 s, 2 s, 500 ms, and 50 ms, respectively. We conclude
that, in order to better capture the network dynamics, the
network manager can adapt the duration of the report in-
tervals, with a small penalty on inference accuracy. Note
that in our implementation, the reports Rk include only two
floating point values for a total of 16 bytes, i.e., they easily
fit within a single packet, and can be aggregated or even
piggybacked in regular traffic.

5.4 Throughput Prediction Tool
Similarly to the inference tool, we investigate the perfor-

mance of the prediction tool with numerous ns-2 simulations,
with the same experimental methodology used to evaluate
the throughput prediction accuracy in Section 5.2. In this
section, we evaluate how the prediction accuracy depends
on network density and traffic load.

Sensitivity to Network Density. The network den-
sity crucially influences the accuracy of the Activity Share
inference, which is the basis of throughput prediction. In
addition, network density determines the number of neigh-
bors and hidden terminals of a link; in turn, these affect
link busy time and collision probability, whose computa-
tions are relevant to our prediction tool. We investigate
these effects by evaluating our predictions for all possible
target link/conflicting node pairs in 10 topologies with 10
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Figure 9: Inference sensitivity to
density (15 Nodes).
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Figure 11: Inference robustness
to short report intervals.

nodes, and densities of 3, 5, and 7, with node transmission
rates of 600 kbps. Figure 12 shows the empirical CDF of the
relative error between the predicted and actual throughput
increase. The plot for density 3 (i.e., for topologies with 3
neighbors per node) is the most accurate, while the case for
density 5 is the least; the average relative errors are 17%,
26%, 22% for densities 3, 5, and 7, respectively. Surprisingly,
the accuracy in throughput prediction does not exactly re-
flect the accuracy in the inference of the Activity Share (we
checked that the trends in Figure 8 were respected also in
this set of scenarios). The main reason is that our model
is more accurate in the computation of the fraction of busy
time than of the collision probability, since the former im-
poses less stringent assumptions (see Section 4.2). Thus, the
case of density 3, where the number of hidden terminals is
restricted by the degree of the receiver, is most accurate.
In terms of the absolute error, i.e., the difference between
the actual throughput gain and the predicted gain, the pre-
dicted throughput gain is within 80 kbps (i.e., 20% of the
rate-limiting value of 400 kbps) from the actual through-
put gain in 83% to 92% of the cases. In order to provide a
more detailed representation of the results above, Figure 13
shows the scatterplot of the predicted and actual through-
put increase collected for the case of density 3. The X-axis
index identifies the actual throughput increase for a satu-
rated link by rate-limiting one of its conflicting nodes, while
the Y-axis represents the predicted value for the same rate-
limiting action. The graph shows an excellent agreement
between the prediction and the simulation. A key finding is
that, by rate-limiting different conflicting nodes of the same
fixed amount, the throughput of the target link can increase
from 7% to 172% of the rate-limited quantity 400 kbps, i.e.,
from 28 kbps to 688 kbps. We conclude that the accuracy of
the prediction model increases as the number of hidden ter-
minals decreases, because of the less stringent assumptions
we impose on the computation of the fraction of busy time
of the under-served link.

Sensitivity to Traffic Load. In this experiment, we in-
vestigate the effect of traffic load on the accuracy of our pre-
dictions, by repeating the simulations above for node trans-
mission rates of 900 kbps. Figure 14 shows the same ranking
among the curves relative to different densities as for the case
of 600 kbps. However, the accuracy obtained for 600 kbps is
higher than for 900 kbps. This is due to two reasons: first,
the Activity Share inference technique based on the protocol
state-space reduction is more accurate for lower traffic loads;

second, in terms of the relative error the prediction of small
throughput gains is more challenging than the prediction of
large gains. As the neighbor load increases, rate-limiting
actions produce on average a lower benefit for the under-
served link, thus increasing the influence of the less accurate
results for lower gains on the CDF. For example, for density
5 and 600 kbps, on average the under-served link gains 0.6
of the rate-limiting amount (i.e., 240 kbps out of 400 kbps
in this experiment), while for the case of density 5 and 900
kbps the under-served link gains 0.4 (i.e., 160 kbps out of
400 kbps). This explains why the relative error is larger for
900 kbps than for 600 kbps.

6. RELATED WORK
Wireless Network Monitoring. Performance monitor-

ing of single-hop WLANs has recently attracted research in-
terest [5, 14]. The proposed approaches reconstruct a global
trace of all network packet transmissions by combining of-
fline detailed traces reported by sniffers spread throughout
the network. These solutions can provide a comprehensive
survey of the network activity. However, they require the
delivery of detailed traces from all (or at least most of)
the nodes, which severely hinders the normal operations of
multi-hop wireless networks. In our work, we show that we
can attain very accurate results with the use of small time-
averaged reports. Furthermore, [5, 14] do not address the
problem of identifying the origins of poor link performance
and rate-limiting the most hindering nodes.

802.11 Throughput Models. Several 802.11 through-
put prediction models have been proposed in the literature
[2, 4, 8, 10, 11, 15, 17]. Their goal is either to compute the
throughput of the network links given their traffic demands,
or to compute the feasible region of the network. In contrast,
we use measurements to infer the network behavior, partic-
ularly the coordination between node transmissions and the
causes of poorly performing links, and use this understand-
ing to improve the throughput of under-served links. Our
scheme relies on active offline link profiling, such as [11, 17],
to identify the carrier sensing and interference relationships
between the nodes. In addition, we introduce passive online
measurements during normal network operations, to cap-
ture the complex node interactions determined by the actual
transmission patterns. Recently, [12] proposes a method to
replace active offline profiling with passive online estima-
tions using traces collected by deployed sniffers. While [12]
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Figure 12: Throughput predic-
tion sensitivity to density (600
kbps).
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Figure 13: Throughput increase
estimation.
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Figure 14: Throughput predic-
tion sensitivity to density (900
kbps).

does not characterize the coordination between conflicting
nodes, nor predicts the effects of rate-limiting actions, we
can leverage the result therein for passive link profiling.

7. CONCLUSIONS
In this paper, we present a management framework for

wireless networks called MIDAS.MIDAS addresses the prob-
lem of identifying the conflicting nodes that cause underper-
formance of a target link. We introduce the key concept of
Activity Share that captures the coordination among the
conflicting nodes. Since the Activity Share cannot be lo-
cally measured by the nodes, we show how MIDAS infers it
using time-aggregate, passively collected measurements re-
ported by the nodes. Finally, we design a throughput model
based on the Activity Share that MIDAS utilizes to predict
the benefit of rate-limiting conflicting transmissions. Our
results show that MIDAS infers the Activity Share with an
average normalized relative error as low as 5%, and predicts
the throughput gain of an under-served link corresponding
to alternative rate-limiting actions with an error lower than
20% of the rate-limited quantity.
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