
A Flexible Framework for
Wireless Medium Access Protocols

Invited Paper

Chris Hunter, Joseph Camp, Patrick Murphy
and Ashutosh Sabharwal

Rice University
Department of Electrical and Computer Engineering

6100 Main St., Houston, TX 77005, USA
Email: {chunter, camp, murphpo, ashu}@rice.edu

Chris Dick
Xilinx Inc.

San Jose, CA 95124
Email: chris.dick@xilinx.com

Abstract— In this paper, we present a framework for Medium
Access Control (MAC) protocol development and performance
evaluation. The framework, developed for the Rice University
Wireless Open-Access Research Platform (WARP), allows us
to interface a large class of medium access protocols with
custom physical layer (PHY) implementations, thereby providing
a flexible and high-performance research tool. MAC protocols
for our framework are written in C and targeted to embedded
PowerPC cores within the Xilinx Virtex II-Pro class of FPGAs.
A key innovation is a flexible interface between the PHY and
the MAC capable of exposing user-defined parameters to either
layer, thus enabling cross-layer research.

I. INTRODUCTION

Commercial IEEE 802.11 wireless hardware has dominated
the wireless networking market in recent years. Despite steady
increases in the raw physical layer (PHY) throughput of these
devices, the Medium Access Control (MAC) standard has
seen fewer radical changes. As of 2006, the draft standard of
802.11n specifies a 540Mbps physical layer and an effective
throughput of only 200Mbps at the MAC layer [1].

Novel algorithms to combat this disparity have been pro-
posed in the literature. These algorithms include the Oppor-
tunistic Auto Rate (OAR) algorithm to adaptively throttle
transmission rates based on channel quality, and algorithms to
address throughput starvation in multihop networks [2], [3].
Demonstrations of the gains of these new MAC algorithms
have existed primarily in simulation environments such as NS-
2 and GloMoSim [4], [5]. Commercial wireless hardware is
generally proprietary and lacks low-level programmability. To
enable at-scale testing, a development platform is essential
to demonstrate the viability of novel MAC protocols and to
enable exploitation of PHY layer characteristics.

A number of research projects have partially addressed this
need by overwriting behavior of commercial 802.11 chipsets
[6], [7], [8]. However, these designs were intended to provide
enhancements to existing 802.11 MAC implementations rather
than to provide a general MAC development environment.
Enhancing these existing projects, the SoftMAC project al-
lows users to modify the format of transmitted packets via
custom drivers that exploit reverse-engineered details about

the Atheros wireless chipset [9]. While this provides a de-
velopment environment that generally spans the space of
MAC algorithms possible on an 802.11 PHY, it offers limited
functionality for research in the larger space of clean-slate
MAC-PHY pairs.

In this paper, we present a framework designed for the Rice
University Wireless Open-Access Research Platform (WARP)
[10]. The framework, known as WARPMAC, provides high-
level, low-breadth tools for derivatives of standard random
access protocols, and low-level, high-breadth tools for ground-
up designs (see Figure 1). This two-tiered structure allows
for user-defined abstraction of hardware details and maximum
flexibility for a large class of algorithms.

Space of possible MACs

Complexity

of implementation

Derivative MACs

Clean-Slate MAC-PHY Pairs

Fig. 1. Two-tiered structure of WARPMAC

However, the flexibility offered by the platform is not
achieved at the cost of lower performance. The motivation
for the creation of the platform is to demonstrate real-world
gains based on novel MAC protocol concepts. This can only
be achieved on a platform that is capable of operating in
the time-scales of commercial wireless devices. To show how



our framework meets the needs of high performance and
maximum flexibility, we will present results from our initial
MAC implementation efforts on the platform.

II. WARP HARDWARE

The features provided by hardware serve as the foundation
of what can be offered at higher networking layers. In this
section, we discuss the WARP hardware capabilities. For more
details see [11].

B

C

A

Fig. 2. WARP FPGA board and radios

The main hardware features of WARP boards shown in
Figure 2 are:

A. Xilinx Virtex-II Pro FPGA:
The FPGA includes a large number of embedded multipliers

and programmable logic blocks for real-time DSP applications
as well as two PowerPC 405 cores (PPCs). When compiled for
these cores, C-code can interact with peripherals implemented
directly in the FPGA fabric. This system-level interaction is
described in more detail in Section III.

B. MIMO-Capable Radios:
Each WARP node can be configured with up to four radios

for MIMO applications. These radio boards, also designed at
Rice University, are capable of targeting both the 2.4GHz and
5GHz ISM bands. Additionally, their Maxim MAX2829 radio
chipset is intended for wideband applications such as OFDM.

C. 10/100 Ethernet:
Ethernet is included on the WARP boards to serve multiple

purposes. For example, it can be used to provide a traffic
source and sink to test the implementation algorithms. Addi-
tionally, it can be used to offload statistics from an experiment,
allowing for large-scale tests.

III. WARP SYSTEM ARCHITECTURE

In this section we will describe the system-level architecture
of WARP from the point of view of network protocols. As
stated earlier, programs compiled for the PPCs within the
FPGA can communicate with hardware peripherals in the
fabric. This interaction occurs via standard bus transactions
and interrupts. MAC algorithms exist as compiled C programs
that run on the PPC cores (see Figure 3).

PowerPC

Pr
oc

es
so

r B
us

Ethernet

TIMER

PHY
RX

PHY
TX

Peripheral ControlHardware Triggers

Interrupt 
Controller

Fig. 3. Example system within the Xilinx Virtex-II Pro FPGA

Realizing a medium access protocol on a hardware platform
intrinsically requires that the protocol be able to control,
and be controlled by, hardware peripherals. Examples of
peripherals include a wireless PHY transmitter, a wireless
PHY receiver, an on-fabric timer, and an ethernet MAC to
source and sink packets from the custom wireless MAC.
Hardware interfaces exist in two forms: peripheral control via
bus transactions and hardware triggers via interrupt handling.

1) Peripheral Control: Hardware peripherals are attached
to either a simpler On-Chip Peripheral Bus (OPB) or a
faster Processor Local Bus (PLB). Through memory reads
and writes, software running on the PPC can pass values to
custom cores and vice versa. Through this interface, a MAC
can control a PHY and other pieces of hardware. Additionally,
a MAC can read state from hardware peripherals, allowing for
cross-layer optimizations that exploit tight coupling between
the MAC and PHY.



2) Hardware Triggers: Often, the state of a MAC algorithm
needs to be modified by some hardware event. For example,
if a received packet needs to be processed, the PHY needs to
notify the MAC that there is a packet in its buffer. This need
is satisfied by the use of an interrupt controller attached to the
necessary hardware peripherals. Users can register interrupt
handlers to deal with each hardware trigger.

A. SISO-OFDM PHY

In a separate project at Rice University, we have undertaken
the design of a custom OFDM physical layer similar in
functionality to 802.11a. Currently, we have developed an
operational PHY transceiver with flexible data rates starting
from 12Mbps. Additionally, the transceiver has built-in cyclic
redundancy checks (CRCs) for determining the presence of
bit-errors, as well as carrier sense multiple-access (CSMA)
abilities for enabling collision-avoidance MACs. A 2x2 full-
multiplexing MIMO-OFDM extension is currently under de-
velopment to achieve higher throughputs.

B. Open-Access

A fundamental attribute of WARP is the free distribution
of hardware and software projects on the WARP website
in the form of a central repository [10]. As community
involvement with the platform grows, research groups will
be able to leverage the engineering efforts of one another to
build novel MACs and PHYs. The source-code for the MAC
implementations presented in Section V is currently available
in the repository.

IV. WARPMAC FRAMEWORK

WARPMAC is a suite of software routines that sits above
the physical layer and allows for flexible abstraction of
hardware interactions. Starting with the physical layer, the
WARPMAC structure is as follows (see Figure 4):

PHY

Drivers

Low-Level

Functions

High-Level

Functions

Fig. 4. WARPMAC organization

• PHY: Real-time dependent operations are implemented
in the FPGA fabric. This includes the physical layer and
all supporting hardware peripherals such as automatic
gain control and packet detection. The custom physical
layer can be Rice University’s SISO-OFDM link, or any
custom layer designed by the community and added to
the central repository.

• Drivers: At this layer, software routines abstract register
reads and writes to low-level hardware control functions.
For example, the custom PHY driver has a function re-
sponsible for setting constellation order. Additionally, the
radio controller has a function to set a center frequency
and also has functions to switch between receive and
transmit modes.

• Low-Level Functions: These functions provide an addi-
tional layer of abstraction by incorporating many driver
calls into functions that read more like psuedocode. For
example, a MAC designer can have access to a function
that takes a packet as an input and returns when that
packet has been sent over the air. Internally, the function
places the radio into a transmit mode, loads the payload
into the PHY, and starts the PHY processor. Another
example of low-level functionality at this layer is interrupt
handler registration. Users can attach functions to the
framework such that custom routines will be called upon
the reception of a packet that passed CRC, the reception
of a packet that failed CRC, and the expiration of a timer.
Additionally, timer control is handled on the clock-cycle
level. Users can set a timer for a maximum number of
clock cycles, and the corresponding handler will be called
upon the passage of that amount of time.

• High-Level Functions: At the highest level, the
WARPMAC framework provides functions to implement
a large class of random access protocols. For example,
timer control is handled on the behavioral level. Users
can set timers for a timeout or backoff window. For
the latter, the function internally manages the binary
exponential backoff seen in all random-access MACs.

The choice of which layer of the WARPMAC organization
to use is completely dependent on the requirements of a user’s
MAC algorithm. For example, because most random-access
protocols require a binary exponential backoff to deal with
medium contention, it is likely that the high-level function
capable of such a behavior is portable to novel random-access
MACs. However, for MAC algorithms substantially different
from basic ALOHA, it is likely that other parts of the stack will
be required [12]. All of the software for WARPMAC and the
documented API are freely available in the WARP repository.
Coinciding with the open-access philosophy of WARP, the
functions provided in these layers will grow with increasing
community involvement to encompass control of new physical
layers.



V. CURRENT MAC IMPLEMENTATIONS

We have designed and implemented two classical MAC
protocols on WARP. The first, based on the ALOHA protocol,
provides the foundation for most random-access MACs. The
second algorithm is an enhancement of the first that provides
CSMA capabilities.

A. ALOHA

The basic algorithm can be described simply in three steps:

1) If a node has a packet to send, it should send the packet.
2) If a node receives a data packet, it should acknowledge

that packet by sending an ACK.
3) If no ACK is received by the transmitter of a data packet,

it should try to send the packet again after a random
backoff time.

In this way, the algorithm resolves packet collisions due to
medium contention. This behavior translates naturally to a
more code-ready state machine as shown in Figure 5.

NONO

NO

YES

NO

YES

YES

YES

YES

NO

YES

Data ACK

TimeoutBackoff

Transmit States

Receive States

Timer States

Idle

Transmit 
Packet

Packet to send? Received a 
packet?

Passed CRC?

Addressed to me?Enter Timeout

Type of Packet

Clear Timeout

Timer Expired?

Type of Timer

Transmit 
ACK

Enter BackoffRe-
transmit

Fig. 5. Subset of MAC behavior

In this diagram, there are three primary code branches:

• Transmit States: These states are responsible for taking
a packet from a higher layer of the networking stack
and pushing it down to the PHY for transmission. The
left-most branch in the flowchart describes this process.
After successfully transmitting the packet, the algorithm
must enter a timeout period where it will wait for an
acknowledgment.

• Receive States: These states perform the inverse task.
They extract a packet from the wireless medium via the
PHY and pass it to higher layers. The middle branch of
the flowchart describes the different checks that the MAC
must perform on each received packet. If the received
packet was a good data packet meant for the receiver, the

node creates an ACK and sends it back to the original
transmitter.

• Timer States: These states are responsible for managing
inferred packet collisions. For ALOHA, there are two
types of timers. The first, the timeout window, is a
deterministic amount of time that the original transmitter
is willing to wait for an ACK. If this time is exceeded
without the successful reception of an ACK, the node
enters into the second type of timer interval, known
as a binary exponential backoff window. This backoff
period is stochastic in order to ensure that all mutually
contending nodes do not attempt to transmit packets
simultaneously after sensing an idle period. When this
timer expires, a retransmission of the original packet
begins.

Important metrics include the round-trip time (RTT) and
the turn-around time (TAT), especially given how these values
expose inefficiencies in the interaction between the MAC and
PHY (see Figure 6).

DATA DATA

ACK ACK
No

de
 A

No
de

 B

RTTTAT

Fig. 6. MAC performance metrics

• TAT corresponds to the amount of time between the end
of a data packet transmission and the start of an ACK
transmission from the receiving node. This value is cru-
cial to the performance of the MAC protocol because it
corresponds to the minimum timeout time the transmitter
is willing to wait for an ACK.

• RTT is a measure of the duration of time between
transmissions in a fully backlogged MAC, which directly
relates to the maximum theoretical throughput of the
MAC. This rate assumes no bit-errors, and hence no
packet drops. In other words, it captures the amount of
MAC overhead seen by higher layers in the best-case
scenario.

For our implementation of ALOHA on a 12Mbps PHY,
measurements can be seen in Table I.

TABLE I
MAC-LAYER PERFORMANCE MEASUREMENTS OF THE ALOHA

IMPLEMENTATION DRIVING A 12MBPS PHYSICAL LAYER

Length(bytes) TAT(µs) RTT(ms) Throughput(Mbps)
500 52 .696 5.74
750 52 .896 6.70

1000 52 1.108 7.22
1250 52 1.320 7.58
1500 52 1.532 7.84



These results demonstrate the intuitive fact that shorter
packet lengths result in lower rates due to the increased
overhead of a static-sized MAC header relative to a shorter
payload. Additionally, the TAT remains constant with varying
packet lengths since ACK generation is only dependent upon
the static-sized MAC header. These throughput measurements
are on par with commercial 802.11 systems [13]. While longer
than commercial systems, these TAT measurements are on par
with competing platforms [9]. We are currently working to
reduce TAT to the level of commercial systems.

We performed an additional experiment to describe the
effective rates seen at higher networking layers. For this test
scenario, nodes were configured to source and sink packets
from Ethernet. In other words, nodes acted as wireless Ethernet
hubs, forwarding all Ethernet traffic over the custom wireless
link. To test the application-layer throughput (“goodput”) of
the custom MAC, iperf was used to generate UDP streams
of arbitrary packet size [14]. The results are shown in Table
II. For comparison to the previous experiment, theoretical
throughput results are also included.

TABLE II
APPLICATION-LAYER PERFORMANCE MEASUREMENTS OF THE ALOHA

IMPLEMENTATION DRIVING A 12MBPS PHYSICAL LAYER

Length(bytes) Throughput(Mbps) UDP Goodput(Mbps)
500 5.74 4.57
750 6.70 5.71
1000 7.22 6.19
1250 7.58 6.63
1500 7.84 6.73

As expected, effective goodputs of the link are considerably
slower than the theoretical maximum throughput due to packet
drops from bit errors. This performance gap can be decreased
with improved reliability in the physical layer by using tech-
niques such as channel coding and MIMO, and by exploiting
novel MACs to take advantage of channel information.

B. CSMA-Enabled ALOHA

As an extension to the previously discussed ALOHA im-
plementation, support of carrier sensing was added to improve
the performance of the link under heavy contention scenarios.
This protocol adds additional software states to the MAC in
order to check the medium before beginning a transmission
in order to avoid collisions. To test the implementation of the
algorithm, iperf was used to saturate traffic from one node
to another and vice versa. Results from this heavy contention
experiment are shown in Figure 7.

As expected, carrier sensing dramatically outperforms stan-
dard ALOHA in heavy contention scenarios. CSMA is the
first step in PHY-level awareness in medium-access. In the
future we plan to build new MACs with even closer MAC-
PHY coupling into this existing system.

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

Seconds

C
u
m

u
la

ti
v
e
 A

v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

 

 

CSMA ! Node 0

CSMA ! Node 1

ALOHA ! Node 0

ALOHA ! Node 1

Fig. 7. Performance of ALOHA versus CSMA

VI. CONCLUSIONS

We have created a highly flexible and performance-driven
medium access development framework. Its two-tiered struc-
ture provides high-level functionality for rapid development
of derivative MACs, and low-level support for clean-slate
designs. The framework has been used at Rice University to
implement classical medium access protocols, and is currently
being used to investigate novel algorithms.

VII. ACKNOWLEDGMENTS

Special thanks to Xilinx and Maxim. This work was
partially supported by NSF grants CNS-0551692 and CNS-
0619797.

REFERENCES

[1] http://www.ieee802.org/11/.
[2] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic

Media Access for Multirate Ad Hoc Networks,” in Proceedings of
the 8th Annual International Conference on Mobile Computing and
Networking, 2002, pp. 24–35.

[3] V. Gambiroza, B. Sadeghi, and E. Knightly, “End-to-End Performance
and Fairness in Multihop Wireless Backhaul Networks,” in Proceedings
of the 10th Annual International Conference on Mobile Computing and
Networking, 2004, pp. 297–301.

[4] http://www.isi.edu/nsnam/ns/.
[5] http://pcl.cs.ucla.edu/projects/glomosim/.
[6] B. Raman and K. Chebrolu, “Revisiting MAC Design for an 802.11-

based Mesh Network,” Third Workshop on Hot Topics in Networks
(HotNets-III), Nov 2004.

[7] http://madwifi.org/.
[8] http://pdos.csail.mit.edu/roofnet/doku.php.
[9] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald, “SoftMAC

- Flexible Wireless Research Platform,” Fourth Workshop on Hot Topics
in Networks (HotNets-IV), Nov. 2005.

[10] http://warp.rice.edu.
[11] P. Murphy, A. Sabharwal, and B. Aazhang, “Design of WARP:

A Wireless Open-Access Research Platform,” in European Signal
Processing Conference, Florence, Italy, Sept. 2006, Accepted.

[12] N. Abramson, “The ALOHA System - Another Alternative for Com-
puter Communications,” in Proceedings of the Fall Joint Computer
Conference, 1970, pp. 281–285.

[13] http://standards.ieee.org/.
[14] http://dast.nlanr.net/Projects/Iperf/.

http://www.ieee802.org/11/
http://www.isi.edu/nsnam/ns/
http://pcl.cs.ucla.edu/projects/glomosim/
http://madwifi.org/
http://pdos.csail.mit.edu/roofnet/doku.php
http://warp.rice.edu
http://standards.ieee.org/
http://dast.nlanr.net/Projects/Iperf/

	Introduction
	WARP Hardware
	Xilinx Virtex-II Pro FPGA:
	MIMO-Capable Radios:
	10/100 Ethernet:

	WARP System Architecture
	Peripheral Control
	Hardware Triggers

	SISO-OFDM PHY
	Open-Access

	WARPMAC Framework
	Current MAC Implementations
	ALOHA
	CSMA-Enabled ALOHA

	Conclusions
	Acknowledgments
	References

