
Lab 2: Building a Simple Transmitter

Siddharth Gupta & Patrick Murphy

Rice University

WARP Project

Document Revision 7

November 23, 2007



Lab 2: Building a Simple Transmitter

1 Introduction

The goal of this lab exercise is to build a simple transmitter and test it in hardware. The transmitter
model will be built in System Generator, converted to a peripheral core and integrated with WARP
platform support packages in Xilinx Platform Studio. When complete, the design will transmit a
sweeping sinusoid at RF using the WARP FPGA and Radio boards.

Note: All files are stored in C:\workshop\userN\ where userN is your user login location. This
location will be referred to as .\ for the rest of the lab.

2 Sinusoid Generator Model

The first step is to explore the sweeping sinusoid generator model in System Generator.

1. Open MATLAB 2006b and change directory to .\Lab2_SweepingTx\sysgen\.

2. Open the System Generator model sweeping_tx.mdl.

3. Run the model and view the output on the Simulink Scope. You should see a sweeping
sinusoid.

4. Double-click the FreqSweepRate block and change the Initial Value parameter to 100.

5. Run the simulation again and verify that the rate of frequency sweep is slower than before.

3 Generating the Peripheral Core

The next step is to create an OPB-compliant peripheral core from the System Generator model.

1. If it’s still open, close the System Generator model sweeping_tx.mdl.

2. On the MATLAB command line, execute: sysgen2opb(‘sweeping_tx’).

3. Open the sweeping_tx.mdl model again. Notice that two new subsystems have been created
which implement the OPB interface.

4. Double-click the System Generator block. Make sure its parameters match those shown in
Figure 1.

5. Click the Settings button, then click the folder icon. Navigate to .\xps\system.xmp, click
Open, then click OK.

6. Finally, click Generate. This process will take a few minutes. If it’s successful, the dialog box
will say Generation Complete.

4 Integrating the Transmitter Model

We have provided a pre-built project in Xilinx Platform Studio for this exercise. This step integrates
your custom transmitter with this platform.

1. Open Xilinx Platform Studio. When prompted, select Open a recent project, click OK, then
navigate to .\Lab2_SweepingTx\xps\system.xmp.

2. Click the IP Catalog tab on the left of the screen, and expand the Project Local pcores
category.

ver. 7: 23-Nov-2007 http://warp.rice.edu 1

http://warp.rice.edu


Lab 2: Building a Simple Transmitter

Figure 1: System Generator parameters for OPB core generation

3. Double-click the sweeping_tx core and click ‘Yes Add IP’.

4. Click the Bus Interface button in the middle of the screen and look for the sweeping_tx core
in the list of included peripherals. Expand the core’s entry and click the hollow green circle to
attach the core to the OPB.

5. Switch to the Ports view and scroll down to the sweeping_tx entry. Expand the entry. Enter
unique net names for the two DAC ports: DAC_I for port radio2_DAC_I and DAC_Q for port
radio2_DAC_Q.

6. Scroll to the radio_bridge_slot_2 core and expand its entry. Enter the same net names
(DAC_I and DAC_Q) for ports user_DAC_I and user_DAC_Q.

7. When complete, your ports list should look like those shown in Figure 2.

8. Switch to the Addresses view and click Generate Addresses. If you get a warning about
your system containing two processors, click ‘Ignore’. When this process finishes, the sweeping_tx
core will have an automatically assigned base address.

9. Choose Hardware→ Generate Bitstream to begin the hardware synthesis process.

ver. 7: 23-Nov-2007 http://warp.rice.edu 2

http://warp.rice.edu


Lab 2: Building a Simple Transmitter

Figure 2: Custom core and radio bridge ports

5 Driving the System from Software

1. Switch to the Applications tab on the left of the screen. Expand the Sources list and double-
click the one file entry.

2. Look through the C code to understand how the radio is setup and controlled through the
radio_controller core. Scroll down in the code and look at the line which writes a frequency
sweep value to your custom peripheral (it’s the line starting with sweeping_tx_WriteReg...).
This value sets the frequency sweeping rate; a smaller value here results in a slower sweep.

6 Testing the Design in Hardware

1. Make sure your WARP FPGA board is connected to power and USB.

2. In XPS, Choose Device Configuration → Update Bitstream. This will compile any code
changes and update the FPGA programming file.

3. Using iMPACT on your local PC, download the bitstream
.\Lab2_SweepingTx\xps\implementation\download.bit to your FPGA board.

4. If everything works, the radio’s green LED will illuminate to indicate the radio is transmitting,
and your node will be generating a sweeping sinusoid at RF. You can observe the waveform
on the spectrum analyzer in the lab. It should look something like Figure 3.

Figure 3: Spectrum Analyzer Output

ver. 7: 23-Nov-2007 http://warp.rice.edu 3

http://warp.rice.edu


Lab 2: Building a Simple Transmitter

7 Optional Exercises

If you finish the lab with extra time, here are a few extensions to try.

• Change the frequency sweep rate to switch the slope of your transmitted signal on the spec-
trogram. You’ll have to figure out what value to write to the FreqSweepRate register that
effectively negates the frequency accumulator input.

• Try altering some of your radio’s settings and observe the changes on the spectrum analyzer.
You will need extra functions from the radio controller driver
(see http://warp.rice.edu/WARP API)

– Change the radio transceiver’s center frequency to a different channel.

– Increase/decrease your radio’s transmit gain.

– Change the transmit low-pass filter bandwidth to its highest setting to see a wider sweep
of your transmitted sinusoids.

ver. 7: 23-Nov-2007 http://warp.rice.edu 4

http://warp.rice.edu/WARP_API
http://warp.rice.edu

	1 Introduction
	2 Sinusoid Generator Model
	3 Generating the Peripheral Core
	4 Integrating the Transmitter Model
	5 Driving the System from Software
	6 Testing the Design in Hardware
	7 Optional Exercises

